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Monday, 28th June 3:00pm CEST 
 
Sabrina Maniscalco, University of Helsinki (FIN)  
Learning to Measure: adaptive informationally complete generalised 
measurements for quantum algorithms 
 
Just like their classical counterparts, quantum algorithms require a set of inputs, provided for 
example as real numbers, and a list of operations to be performed on some reference initial state. 
Unlike classical computers, however, information is stored in a quantum processor in the form of a 
wavefunction, thus requiring special procedures to read out the final results. In fact, it is in general 
neither possible nor convenient to fully reconstruct this quantum state, so that useful insights must 
be extracted by performing specific observations. 
 
Unfortunately, the number of measurements required for many popular applications is known to grow 
unsustainably large with the size of the system, even when only partial information is needed. This 
is for example the case for the so-called Variational Quantum Eigensolver, which is based on the 
reconstruction of average energies. Here we propose a scheme to tackle this problem.  
 
We employ a generalised class of quantum measurements that can be iteratively adapted to minimize 
the number of times the target quantum state should be prepared and observed. As the algorithm 
proceeds, it reuses previous measurement outcomes to adjust its own settings and increase the 
accuracy of subsequent runs. We make the most out of every sample by combining all data produced 
while fine-tuning the measurement into a single, highly accurate estimate of the energy, thus 
decreasing the expected runtime by several orders of magnitude. Furthermore, all the measurement 
data contain complete information about the state: once collected, they can be reused again and 
again to calculate other properties of the system without additional costs. 
 
 
Monday, 28th June 4:00pm CEST 
 
Carlton Caves, University of New Mexico (USA) 
How to perform the coherent measurement of a curved phase space by continuous 
isotropic measurement.  Spin and the Kraus-operator geometry of SL(2,C) 
 
 
I will discuss how to perform the measurement of the spin-coherent-state POVM by making weak, 
continous isotropic measurements of the three spin components. Starting from the standard approach 
to weak, continuous measurements, the analysis becomes distinctive by focusing on the Kraus 
operators that develop over the course of the continuous measurements, analyzing their evolution 
by path integrals, diffusion equations, and stochastic differential equations. The Kraus-operator-
centric approach reveals the representation-independent geometry of SL(2,C) in which the Kraus 
operators move. The spin coherent states make up a 2-sphere phase space on the boundary of the 
space of Kraus operators. I will discuss how all this can be generalized to phase-space 
correspondences for any compact semi-simple Lie group and indicate how the realization that all of 
physics, classical and quantum, occurs on (possibly curved) phase spaces opens up new avenues for 
research. 
  
This work was carried out with Christopher S. Jackson. 
 
 
 



Tuesday, 29th June 3:00pm CEST 
 
Giulia Ferrini, Chalmers University of Technology (SWE) 
What can quantum optics say about magic? 
 
Abstract: 
TBA 
 
Tuesday, 29th June 4:00pm CEST 
 
Janos A. Bergou, City University of New York (USA) 
Complementarity beyond wave-particle duality: A historic perspective  

Einstein in 1905, in his explanation of the photoelectric effect, postulated that light, the 
quintessential wave, had to possess particle-like properties. In the course of 1923-24, de Broglie, 
analyzing electron scattering from metal surfaces, postulated that electrons, the quintessential 
particles, must possess wave-like properties. In 1928, Bohr made the first attempt to reconcile the 
two viewpoints and introduced the concept of complementarity (or, in a more restricted sense, wave-
particle duality), and thus the now 90 years history of complementarity has started.  

We begin with a brief overview of the history of quantitative complementarity relations. A particle 
going through an interferometer can exhibit wave or particle properties. The first quantitative duality 
relation was obtained by Greenberger and Yasin [1], between the strictly single-partite properties: 

predictability P = |ρ11 − ρ22| and visibility V , of the form P 2 + V 2 ≤ 1. In a seminal study of the 
two-path interferometer, Englert introduced detectors into the interferometer arms and defined the 
path distinguishability, D, as the discrimination probability of the path detector states [2]. He derived 
a relation between this type of path information and the visibility V = 2|ρ12| of the interference 
pattern, in the form  

D2 + V 2 ≤ 1.           (1)  

In a follow-up [3], Englert and Bergou showed that D is a joint property of the system and the meter 
to be clearly distinguished from predictability, which is a strictly single partite property. They showed 
that (1) corresponds to the so-called which-way sorting (post-selection) of the measurement data. 

They also introduced the quantum erasure sorting, which led to the duality relation P 2 + C2 ≤ 1, 
where the coherence C is a joint property of the system and detectors. and, most importantly, 
conjectured that D should be related to an entanglement measure. Taking up this conjecture, the 
complete bipartite (particle-meter) complementarity relation, connecting complementarity, i.e., 
visibility of the interference pattern, V , and path predictability, P , to entanglement, was found in 
[4], in the form of a triality relation,  

P2 +C2 +V2 ≤1.           (2)  

Here C is the concurrence, emerging naturally as part of the completeness relation for a bipartite 
system. In [5], this triality relation was further generalized to multi-path (n-path) interferometers. 
These works completed the research on quantitative complementarity and brought the Bohr-Einstein 
debate to a very satisfying closure. In particular, Eq. (2), displays explicitly what is the truly quantum 
contribution and what can be regarded as the classical contribution. The triality relation is the 
culmination of research on quantitative complementarity and, in a way, closes the debate.  

In all of the works discussed above, the l2 measure of coherence was employed. Recently, however, 
a resource theory of quantum coherence was developed and two new coherence measures were 
introduced [6]. The l1 measure is the trace distance, the entropic measure is the entropic distance 
of a given state to the nearest incoherent state. In the second part of the talk we present our recent 



results for multi-path interferometers and finite groups, employing the new measures. Using these 
measures, we derived entropic and l1 based duality relations for multi-path interferometers [7, 8]. 
The l1 based duality relation for n-path interferometers is  

 

where C is the l1 measure of coherence, generalizing the visibility V . To close, we will discuss two 
entropic duality relations and present recent results generalizing duality relations to finite groups 
[9].  
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Abstract

Einstein in 1905, in his explanation of the photoelectric e↵ect, postulated that light, the quintessential wave, had to

possess particle-like properties. In the course of 1923-24, de Broglie, analyzing electron scattering from metal surfaces,

postulated that electrons, the quintessential particles, must possess wave-like properties. In 1928, Bohr made the first

attempt to reconcile the two viewpoints and introduced the concept of complementarity (or, in a more restricted

sense, wave-particle duality), and thus the now 90 years history of complementarity has started.

We begin with a brief overview of the history of quantitative complementarity relations. A particle going through

an interferometer can exhibit wave or particle properties. The first quantitative duality relation was obtained by

Greenberger and Yasin [1], between the strictly single-partite properties: predictability P = |⇢11 � ⇢22| and visibility

V , of the form P 2
+V 2  1. In a seminal study of the two-path interferometer, Englert introduced detectors into the

interferometer arms and defined the path distinguishability, D, as the discrimination probability of the path detector

states [2]. He derived a relation between this type of path information and the visibility V = 2|⇢12| of the interference
pattern, in the form
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In a follow-up [3], Englert and Bergou showed that D is a joint property of the system and the meter to be clearly

distinguished from predictability, which is a strictly single partite property. They showed that (1) corresponds to

the so-called which-way sorting (post-selection) of the measurement data. They also introduced the quantum erasure
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+ C2  1, where the coherence C is a joint property of the system and

detectors. and, most importantly, conjectured that D should be related to an entanglement measure. Taking up

this conjecture, the complete bipartite (particle-meter) complementarity relation, connecting complementarity, i.e.,

visibility of the interference pattern, V , and path predictability, P , to entanglement, was found in [4], in the form of

a triality relation,
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Here C is the concurrence, emerging naturally as part of the completeness relation for a bipartite system. In [5], this

triality relation was further generalized to multi-path (n-path) interferometers. These works completed the research

on quantitative complementarity and brought the Bohr-Einstein debate to a very satisfying closure. In particular, Eq.

(2), displays explicitly what is the truly quantum contribution and what can be regarded as the classical contribution.

The triality relation is the culmination of research on quantitative complementarity and, in a way, closes the debate.

In all of the works discussed above, the l2 measure of coherence was employed. Recently, however, a resource theory

of quantum coherence was developed and two new coherence measures were introduced [6]. The l1 measure is the

trace distance, the entropic measure is the entropic distance of a given state to the nearest incoherent state. In the

second part of the talk we present our recent results for multi-path interferometers and finite groups, employing the

new measures. Using these measures, we derived entropic and l1 based duality relations for multi-path interferometers

[7, 8]. The l1 based duality relation for n-path interferometers is
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where C is the l1 measure of coherence, generalizing the visibility V . To close, we will discuss two entropic duality

relations and present recent results generalizing duality relations to finite groups [9].

[1] D. M. Greenberger and A. Yasin, ”Simultaneous wave and particle knowledge in a neutron interferometer,” Phys. Lett. A
128, 391 (1988).



Wednesday, 30th June 10:00am CEST  
 
Margaret Reid, Swinburne University of Technology (AUS) 
 
Macroscopic realism, macroscopic Bell inequalities, retrocausality and a 
microscopic objective model for measurement based on the Q function  
 
We first examine the meaning of macroscopic realism and the measurement problem. We give 
examples of violations of Leggett-Garg’s macrorealism, and of macroscopic Bell inequalities, where 
all necessary measurement need only distinguish between two macroscopically distinct coherent 
states. More generally, we are able to map from microscopic paradoxes to macroscopic paradoxes, 
where the polarising beam splitters that enable unitary rotations to determine measurement settings 
are replaced by macroscopic unitary interactions, arising from nonlinear interactions. This leads us 
to consider two definitions of macroscopic realism: weak macroscopic realism (wMR) and 
deterministic macroscopic realism (dMR), where the system is regarded as being in one or other state 
either after or prior to the unitary rotation, respectively. We find failure of dMR, but consistency 
with wMR. We then analyse delayed choice tests with Leggett-Garg inequalities, showing violation of 
the dimension witness inequality for a macroscopic setup with entangled cat states. This negates 
non-retrocausal two-dimensional models, suggesting an apparent macroscopic retrocausality. 
However, a macroscopic retrocausality is avoided by considering extra dimensions that give 
consistency with wMR.   
  
Finally, we explore a microscopic theory (the Objective Quantum Field Theory model) for a quantum 
measurement, based on microscopic Q function trajectories that propagate forward and backward in 
time. Interestingly, this allows a retrocausality at a microscopic level, but we show remains 
consistent with wMR, which helps elucidate the measurement problem. We show that wMR implies 
an Einstein-Podolsky-Rosen-type paradox at a microscopic level: If wMR is valid, then the system is 
regarded to be in one or other of two macroscopically distinct states; but one can show that 
these states cannot be described as quantum states. Using the OQFT model, we demonstrate 
trajectories consistent with wMR that realise this paradox and that also realise Bell nonlocality, as 
well as giving insight into the creation of entanglement. 
 
 
Wednesday, 30th June 11:00am CEST  
 
Howard M. Wiseman, Griffith University (AUS) 
 
The Heisenberg limit for laser coherence 
 
To quantify quantum optical coherence requires both the particle- and wave-natures of light. For an 
ideal laser, it can be thought of as the number of photons emitted into the beam with the same 
phase. For some 60 years, it had been believed that for a laser with an ideal output beam (described 
by a phase-diffusing coherent state), this number, C, was limited by the Schawlow-Townes limit to 
the linewidth [1]. Specifically, the S-T limit implies that the coherence C is at most of order the 
square of the mean photon number µ in the laser itself: C = O(µ^2). Here, assuming nothing about 
the laser operation except that its inputs are incoherent, and that its output is close to the ideal 
beam, we find the ultimate (Heisenberg) limit: C = O(µ^4) [2]. For µ large this is enormously greater. 
Moreover, we find a laser model that can achieve this scaling, and show that, in principle, it could 
be realised with familiar physical couplings [2]. 
 
[1]  A. L. Schawlow and C. H. Townes, "Infrared and Optical Masers", Phys. Rev. 112, 1940-9 (1958).  
[2] Travis J. Baker, Seyed N. Saadatmand, Dominic W. Berry, and Howard M. Wiseman, “The Heisenberg limit for laser 
coherence”, Nature Physics  17, 179–183 (2021). 
 
 


